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Abstract. Active adaptive management (AAM) is an approach to wildlife management
that acknowledges our imperfect understanding of natural systems and allows for some
resolution of our uncertainty. Such learning may be characterized by risky strategies in the
short term. Experimentation is only considered acceptable if it is expected to be repaid by
increased returns in the long term, generated by an improved understanding of the system. By
setting AAM problems within a decision theory framework, we can find this optimal balance
between achieving our objectives in the short term and learning for the long term. We apply this
approach to managing the translocation of the bridled nailtail wallaby (Onychogalea fraenata),
an endangered species from Queensland, Australia. Our task is to allocate captive-bred
animals, between two sites or populations to maximize abundance at the end of the
translocation project. One population, at the original site of occupancy, has a known growth
rate. A population potentially could be established at a second site of suitable habitat, but we
can only learn the growth rate of this new population by monitoring translocated animals. We
use a mathematical programming technique called stochastic dynamic programming, which
determines optimal management decisions for every possible management trajectory. We find
optimal strategies under active and passive adaptive management, which enables us to examine
the balance between learning and managing directly. Learning is more often optimal when we
have less prior information about the uncertain population growth rate at the new site, when
the growth rate at the original site is low, and when there is substantial time remaining in the
translocation project. Few studies outside the area of optimal harvesting have framed AAM
within a decision theory context. This is the first application to threatened species translocation.
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INTRODUCTION

Managers of natural systems must make difficult
decisions in the face of considerable uncertainty. This
uncertainty presents itself in three ways (Parma and
NCEAS Working Group on Population Management
1998). First, process uncertainty comes from variability
and unpredictability in natural processes that are
beyond the manager’s control. For example, a wildlife
manager cannot predict a population growth rate that is
highly weather dependent. Second, model uncertainty
arises from an inability to understand exactly how a
system works, for example, knowing how a species will
respond to changes in habitat availability. Finally,
observational uncertainty comes from our inability to
directly and precisely measure the state of a system, such
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as the number of individuals of a particular species in a
predefined area.

One way to deal with uncertainty when managing is to
take an adaptive management approach. Adaptive
management recognizes uncertainty and can reduce
model uncertainty if that reduction can improve future
performance (Walters 1986). It involves specifying a
number of candidate hypotheses or models of how the
system is functioning, and updating the level of belief in
each model as the results of management are observed.
There are two forms of adaptive management: passive
and active. The difference between the two lies in
whether the learning potential of management actions is
considered when making decisions. In passive adaptive
management, learning is valued, but is not part of the
management plan. In active adaptive management
(AAM), the ability to learn influences management
decisions: there is a balance between achieving the
objective in the present and learning for improved
management in the future.
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Although AAM has been widely advocated for
wildlife management (Parma and NCEAS Working
Group on Population Management 1998, Shea et al.
2002, Aldridge et al. 2004, Folke et al. 2004, Grafton
and Kompas 2005, Takagawa et al. 2005, Morita et al.
2006, Schmiegelow et al. 2006), its application has been
limited (Lee 1999, Allan and Curtis 2005); exceptions
include Sainsbury (1991) and Walters et al. (1993).
Existing management cultures may not encourage the
acknowledgment of uncertainties (MacDonald and Rice
2004, Allan and Curtis 2005). Experimental actions can
be perceived as failures or bad management when there
are short-term losses, even if this outcome reduces model
uncertainty (Lee 1999). The cost of forgoing returns
during short-term experimentation may be too great,
particularly when the ecological “short-term” translates
to years or even decades (Walters et al. 1993). In cases
where there is a clearly defined objective, decision theory
offers a rational and transparent framework for AAM.
We can determine the precise amount of learning that
will be repaid by improved future management, maxi-
mizing expected returns over the entire time frame in
question. A careful choice of time horizon and discount
factor indicates the level of tolerance for short-term
losses (Walters and Green 1997).

Decision theory is a formal approach to decision
making that involves clearly specifying objectives and
acknowledging uncertainty (Clemen 1996, Shea and
NCEAS Working Group on Population Management
1998). It can be implemented with qualitative methods
or complex mathematical tools (Shea and NCEAS
Working Group on Population Management 1998,
Possingham et al. 2001). A decision-theoretic approach
requires a clear statement of management objectives, a
list of management options, identification of the
important variables to monitor, and at least one
plausible description of the dynamics of the system
(Shea and NCEAS Working Group on Population
Management 1998). A quantitative decision-theoretic
approach to adaptive management has been applied
extensively to problems of optimal harvest, particularly
of fish (Walters and Hilborn 1976, Smith and Walters
1981, Walters 1981, Walters et al. 1993) and waterfowl
(Nichols et al. 1995, Williams and Johnson 1995,
Johnson and Case 2000). However, only recently has it
has been applied to other areas of wildlife management,
such as designing marine reserves (Gerber et al. 2005),
managing forests to maintain old-growth habitat
(Moore and Conroy 2006), and planning revegetation
(McCarthy and Possingham 2007).

In this paper we optimize the AAM of bridled nailtail
wallaby (Onychogalea fraenata) translocation, as an
extension of the translocation problem described in
Rout et al. (2007). AAM has been advocated repeatedly
for species translocations (Sarrazin and Barbault 1996,
Brook et al. 2002, Stockwell and Leberg 2002, Hirzel et
al. 2004, Seddon et al. 2007), although it is seldom
applied (Blumstein 2007). A recent exception is Arm-
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strong et al. (2007), who applied an AAM approach to
the reintroduction of the New Zealand Hihi to Mokoia
Island. Although the reintroduction itself failed, the use
of an AAM approach allowed them to gain useful
information from the process, which they then utilized in
reintroductions of the species to other islands. However,
their adaptive management manipulations were based
on more traditional experimental design, rather than a
decision-theoretic approach.

We examine the AAM of the translocation of bridled
nailtail wallabies, an endangered species found in central
Queensland, Australia. Once believed to be extinct,
bridled nailtail wallabies were rediscovered at a single
location in what is now Taunton National Park. They
have since been successfully translocated to Idalia
National Park and Avocet Nature Refuge, and a
substantial captive population has been established
(Johnson 2003, Lundie-Jenkins and Lowry 2005). To
satisfy the conditions of recovery, as specified in its
20052009 Recovery Plan, the species needs to be
reestablished at two more sites (Lundie-Jenkins and
Lowry 2005).

METHODS

We construct an AAM plan for a manager who must
choose where to translocate wallabies over time, with a
choice of two possible sites. We assume that the
manager has good knowledge of population growth at
the first site. A second new site is available for
translocations, but there is limited information on its
suitability as habitat for this species. The only way to
learn about its suitability is to translocate there and
monitor the outcome. The choice of whether to invest
translocated animals in the original site or the new site
depends heavily on what the population growth rates are
at the two sites (Rout et al. 2007). How much effort
should be put into learning about the new site, as
opposed to just managing with the information already
available? This scenario allows us to look directly at
learning and managing in an AAM context.

Formulating the problem

Assume that wallabies from a captive source popula-
tion can be translocated to two different sites. The captive
population produces two “excess” individuals available
for translocation in each time step. The growth rate of
our population at the “original” translocation site is
known, whereas the growth rate is uncertain at the other
“new” site, and we will have opportunities to learn its
value by translocating animals to that site and following
their fate. Management must decide where to translocate
available captive animals, and we represent this decision
with variable d (the number of individuals translocated to
the new site). Both animals can be translocated to the
original site (d = 0), both can be translocated to the new
site (d=2), or one animal can be translocated to each site
d=1).
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TaBLE 1. Reasonable ranges for demographic parameters of bridled nailtail wallabies
Parameter Definition Established range Source
A birth rate (probability of a female giving 0.89-1.00 Johnson (1997), Fisher et al. (2000)
birth to one offspring in a 4-month period)
f ratio of female to male newborns 0.5 McCallum et al. (1995)
s mortality rate (probability of an individual 0.01-0.46 Fisher (1998), Fisher et al. (2000),
dying in a 4-month period) Pople et al. (2001)
Population dynamics bim—n.n ifn<m<K

We use a first-order Markov chain stochastic popu-
lation model to describe the dynamics of each popula-
tion. We label the new and original populations 4 and
B, respectively, and limit them to maximum sizes of K,
and Kp. This population size limit can be interpreted as
the carrying capacity of each population site. We only
track female wallabies: there are n females in popula-
tion 4 at time #, and n® females in population B at time
t. Each time step in the SDP is equal to four months. In
each time step, animals are translocated, then the entire
population is subject to natural mortality, and then
there is reproduction. Translocated animals experience
the same mortality rate as the rest of the population; we
assume that there is no additional mortality associated
with translocation. The translocation project runs for
four years, or 12 time steps (7 = 12).

Stochastic births and deaths in the populations are
represented using matrices, with elements that give the
probability of shifting from one population size to
another within a time step. Both populations 4 and B
have the same recruitment matrix L. (It is simple to
construct different recruitment matrices for each site if it
is relevant to the translocated species.) A female can give
birth to a maximum of one newborn in a time step. This

occurs with a probability A, and there is a probability f

that the newborn will be female. Because we assume a
female cannot have more than one newborn in a time
step, the probability that a single female has i female
newborns in a time step is

(1=2)+r1—f) ifi=0
bir =4 M ifi=1
0 otherwise.

Following from this, the probability that j females have i
female newborns is

{ iby1+ (j—i)bo1
ij =

0 otherwise.

ifi<j

At population densities close to the carrying capacity K,
reproduction is truncated to ensure that the population
does not exceed its carrying capacity. Each element /,,,
of the recruitment matrix L is the probability that the
population changes from n to m individuals due to
reproduction:

K—1
bnn = 1= bina ifm=K
i=n

0 if m<norm>K.

Population B has a known mortality rate pg. Each
element sfj of the survival matrix S is the probability of
Jjindividuals surviving to become 7 individuals in the next
time step, where i and j are both <Kjp. This is given by
the binomial probability

5 (é)uﬁ?i(l—ug)i if0<i<j
=

si
0 otherwise.

The Markov chain transition matrix for this population
from time step (¢) to time step (z + 1) is Mz = LSp, the
matrix product of the recruitment matrix L and the
survival matrix Sz. We do not consider processes of
immigration and emigration, because, in cases of
threatened species with isolated translocation sites and
low population densities, dispersing animals are unlikely
to survive and reproduce.

We chose demographic parameters within reasonable
ranges for bridled nailtail wallabies, as outlined in Table
1. The birth probability for both populations (L) is kept
constant at 0.9, and we examine three possible mortality
rates for population B (up): 0.4, 0.3, and 0.2. The per
capita growth rate r of population B can be approxi-
mated as the expected number of female offspring
resulting from one female (Tenhumberg et al. 2004):

Kp
. . B
r = E lmi"l
i=1

where m?, is an element of the transition matrix M. We
thus examine situations in which population B is known
to be decreasing (up=0.4, r=0.87), roughly stable (Lz=
0.3, r =1.015), or increasing (ng=0.2, r = 1.15).

The carrying capacities of the populations, K, and
K, are both set at 30 individuals. These were not chosen
as realistic population limits for bridled nailtail walla-
bies, but are rather an upper limit on what we can
reasonably compute with the program. To ensure that
this does not bias our conclusions, we analyze results for
when the original population is both far from and close
to its carrying capacity, to examine its effect on the
optimal strategies.
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To describe our limited knowledge of the mortality
rate in population A4 (p,), we use a beta probability
distribution. It has the following density function (with
shape parameters o and ):

W (1 =)™
B(a, B)

where B(o, P) is a beta function that acts as a
normalizing constant. Constructing the survival matrix
for population A is more complicated than for
population B due to the uncertain mortality rate .
Because we do not know the mortality rate exactly, we
cannot construct the survival matrix S 4 exactly. Instead
we must integrate over all possible values for g,
weighting by the probability that each is the true
mortality rate (using the beta distribution). After some
algebraic manipulation (see Appendix A), the expected
survival matrix for population 4 can be shown to be

EHA (S;?.»1j‘+d‘a7 B)
n4+d-—h+o-—1 (h+B—1)
nf +d—h h

= nt+d+o+p—1
nt+d

0 h>nt+d

fl) =

h<n+d

(when we assume that o and P are positive integers),
where sﬁnﬂd is the probability that ' + d wallabies at
time ¢ become / wallabies at time 7 + 1 due to mortality
(h < n* 4+ d). E,, () is the expected value taken over all
possible values of mortality rate p,. We only consider
cases where the beta parameters o and B are positive
integers. In Appendix A, we give an alternative
formulation for any positive real o and .

We assume that animals translocated to the new site
are monitored for the time step of their translocation,
and we receive data on whether they survive that time
step. These translocated individuals have the same
mortality rate as the rest of population 4, and can thus
be viewed as a sample of the larger population. (If
translocation increases mortality, the mortality rate of
translocated animals is then a conservative estimate of
the mortality of the larger population.) Data on the
death and survival of translocated animals give us
further information about the mortality rate p4, which
can be combined with the present understanding of the
mortality rate (a beta distribution) using Bayes’ theo-
rem. The monitoring of death and survival is a type of
binomial sampling, which is known to be a conjugate for
a beta prior distribution (Casella and Berger 1990). This
means that the posterior combination of new data and a
beta prior is also a beta distribution with different
parameters. We can therefore update our knowledge of
the mortality rate quite easily: for binomial sampling
with g deaths and d — g survivors from #n translocations,
the beta distribution can be updated as (a0+g, p+d— g)
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(McCarthy 2007). That is, to update the mortality rate,
we add the number of animals that die to o, and add the
number of animals that survive to f.

Parameters o and § can take any positive value, yet it
is necessary to choose a finite set of values at which to
calculate the optimal management strategy. Throughout
the four-year translocation project there is a maximum
of 22 opportunities to learn about the new site
(translocation occurs in time steps 1 to 11; in each,
two animals at most can be translocated to the new site).
If we were to begin the translocation project with a
uniform beta distribution (a =1, p = 1), and we have at
most 22 learning opportunities, we could arrive at any
combination of a=1,2,...and =1, 2, ... such that o+
B < 24. To allow for other more informative prior
distributions, we imposed a much higher ceiling of 52 on
o + B. Any additional data obtained that would cause
the parameters to violate this condition are ignored. We
analyze results only up to o+ B < 24 to ensure that this
upper bound on learning does not interfere with the
strategies observed.

Finding the optimal management strategy

To determine the optimal management decisions, we
use a mathematical method known as stochastic
dynamic programming, or SDP. SDP determines the
exact optimal decision for each possible management
state, which in this case is defined by the number of
animals at each site. It can be applied to any stochastic
system with a finite number of states, and where
sequential decisions are made (Bellman 1957, Mangel
and Clark 1988, Lubow 1996). SDP has been applied to
ecological management problems such as harvesting a
wild population (Walters 1981, Johnson et al. 1997),
biocontrol (Shea and Possingham 2000), fire manage-
ment (McCarthy et al. 2001), allocation of conservation
effort (Yokomizo et al. 2003, Wilson et al. 2006), and
landscape reconstruction (Westphal et al. 2003), as well
as translocation (Lubow 1996, Tenhumberg et al. 2004,
Rout et al. 2007).

The first step of any optimization is to define the
objective. We aim to maximize the total number of
animals in both populations at the end of the
translocation period. That is,

V(T,a, B,n’},nl;) = nfT‘ + nl; (1)

where V' is the value of the strategy. We subsequently
calculate the value of the optimal strategy at earlier time
steps in the translocation project (assuming that all
subsequent decisions are optimal) as the expected total
population size at terminal time 7. Stochastic dynamic
programming produces state-dependent optimal deci-
sions, which in this case means that an optimal decision
is found for each population state, i.e., for every possible
number of animals in each population (n4, nf), and a
range of states of belief regarding the uncertain
mortality rate (positive integer values of o and B such
that a4 B < 52). At the terminal time 7, the final reward
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is calculated for each population state based on the
objective function. The SDP then steps backward, to
evaluate each possible decision for each possible state in
the previous time step, using transition probabilities
given by the population models. Of all the possible
decisions to be made, the one that yields the highest
expected returns is selected as the optimal decision for
that system state at that time step.

Passive adaptive management

Although we are principally concerned with optimiz-
ing active adaptive management, we first calculate the
equivalent optimal passive adaptive strategies. These are
essential for identifying situations in which it is optimal
to learn under AAM. By comparing optimal strategies,
we can find situations where it is optimal to add to the
new population under active adaptive management, but
not under passive adaptive management; these are
decisions driven by the need to learn.

The dynamic programming equation for passive
adaptive management is

(t(xB7 [7 [B)
Ki Ky n
= max EZZVIJrI o, B,1,)
d={0.1.2} 4=59=0 %0 =0

X (5 o B)Ew(s7

where V' is the expected final population size (across
both sites) under optimal passive adaptive management,
and it depends on the current time step in the
translocation project (), current knowledge about the
mortality rate in population A (a beta distribution with
parameters o and f), and the current size of each
population (n! and #n®). It is found by determining the
expected final population sizes under each possible
translocation choice d and choosing the maximum.
These expected values are calculated by weighting all of
the possible outcomes over the next time step by their
probability of occurrence and summing the results. The
SDP is calculated backward, so it begins by calculating
the expected value 7 in the final time step 7 of the
translocation project (Eq. 1). It then steps back to the
previous time step T — 1, to calculate the expected final
population sizes under each possible translocation
choice, and finds the translocation for each state that
will give the highest expected final population size. It
continues to step backward, repeating this process and
finding the optimal translocation d for each state in each
time step.

We assume we observe that g of the 4 animals
translocated to population 4 die within the time step.
Population A4 has size i in year ¢+ 1, while population B
has size j. The probability of population B having size j
is the probability of #n® + 2 — d animals after
translocation becoming j animals through births and
deaths, and this can be read from the matrix M. To

f’),hw g B+2 d

OPTIMAL ADAPTIVE TRANSLOCATION 519

investigate the size of population A at time ¢+ 1, we use
the expected survival matrix to determine the probability
that & of the initial #»? animals survive, and the
probability that d — g of the d translocated animals
survive. Examining these probabilities separately is not
necessary under passive adaptive management, but
allows the beta distribution to be updated under active
adaptive management, as we will describe. The surviving
h+ d— g individuals reproduce to become i animals, and
the probability of this occurring is read from the
recruitment matrix L.

Our observation that g of the d animals translocated
to population A4 die within the time step gives us new
information about the mortality rate of population A.
However, as previously mentioned, the learning poten-
tial of actions is not considered when determining the
value of a management decision under passive adaptive
management. Hence, o and B are not updated with this
new information when finding the optimal decision.
When putting these optimal decisions into practice, new
information about the mortality rate would not be
ignored. In each time step, we would implement the
optimal decision for the current state, which includes the
current estimate of the new population mortality rate
(described by o and ). If we were to learn new
information about this mortality rate, in the next time
step we would implement the optimal decision for the
new estimate of the mortality rate. Thus learning may
still occur, but under passive adaptive management the
optimal decisions do not take into account the value of
learning.

Active adaptive management

The dynamic programming equation for active
adaptive management is

A B
V(t,o, B,ny )
Ky Ky n
D35 S UM SR
4={0.1.2} =575 =0 =0
XEM(SZ“,,[A‘Qa B)E( d‘aB i\h+d—g /Bn B42—d-

This is the same as for passive adaptive management,
except that o and B are updated with new information
that we receive from translocating to population 4.
Consequently, our updated understanding of the mor-
tality rate in population A4 is a beta distribution with
parameters oo+ g and B+ d — g.

RESULTS

We present optimal translocation strategies as a
function of the expected mortality rate E(py) = o/(o +
B) and (o — 1) 4+ (B — 1), rather than considering o and
directly. The expected mortality rate is our best point
estimate of the true underlying mortality rate at any
time, whereas (o0 — 1) + (B — 1) gives the number of
observations made if we begin with a uniform (a=p=1)
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prior distribution for the mortality rate. Thus, it is a
measure of the confidence we have in our estimated
mortality rate. Furthermore, we focus our discussion of
results on the optimal balance between learning and
managing for a translocation project. We aim to answer
this question: When should we learn to improve future
management and when should we just manage as best
we can with the information we have? Due to the
complexity of the SDP and the volume of results
generated, it is impossible to display the optimal
management strategies in their entirety. Instead we
focus on overall patterns in the results and illustrate our
discussion with relevant examples.

Passive adaptive management

The optimal translocation to population A4 under
passive adaptive management depends only on the
expected mortality rate, and not on the uncertainty
around that mortality rate (Jo — 1]+ [B — 1]); see Figs. 1
and 2. If both sites are empty at the start of the
translocation project (1 = 1), optimal passive adaptive
decisions are not affected by the carrying capacity of the
original site (Fig. la,c,e). In this case, the expected
mortality rate informs translocation decisions in the
same way that the known mortality rate did previously
(Rout et al. 2007). Generally, the optimal passive
adaptive strategy is to translocate both wallabies to
the site with the lowest (expected) mortality rate (Fig.
la, c, e). If the original population is stable or increas-
ing, optimal passive adaptive decisions are slightly
affected by the carrying capacity of the new site (Fig.
Ic, e). If the new site has a very low estimated death rate,
instead of translocating both animals to the new
population it is best to translocate one animal into each
population. This is because the new site is expected to
grow at such a rate that it will reach its carrying capacity
within the translocation period, so the benefit of adding
extra animals is diminished.

If the original population has a high mortality rate of
0.4, the passive adaptive decisions are not affected by the
number of wallabies in that population (compare Fig. la
and b). However, if the original population has a lower
mortality rate, optimal passive adaptive decisions when
it is close to carrying capacity are significantly different
than those when it is empty. If the original population is
stable (up = 0.3), it is optimal to translocate to the new
site if it is expected to have a mortality rate of 0.37 or
less, 0.07 higher than when the original site is empty
(compare Fig. 1c and d). If the original population is
increasing (ug = 0.2), it is optimal to translocate to the
new site if it is expected to have a mortality rate of 0.65
or less, 0.45 higher than when the original site is empty
(compare Fig. le and f). In both these cases, the original
population is likely to increase to carrying capacity
within the time horizon without the aid of translocation.
Any animals added to this population when it is at
carrying capacity have a mortality rate of 1. In general,
it is optimal to add to the population with the lowest
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mortality rate. Thus, as the original population ap-
proaches carrying capacity it becomes optimal to
translocate individuals to the new site over a broader
range of (expected) mortality rates. The optimal passive
adaptive strategy is thus driven only by the expected
growth rates of the two sites in relation to their carrying
capacities, not by the uncertainty in the unknown
mortality rate at the new site.

Learning for active adaptive management

By comparing the passive and active adaptive
strategies, we can determine the importance of learning
about the mortality at the new site. The passive and
active adaptive strategies show a marked difference in
the early stages of the translocation project. For
example, consider that both sites are empty, and the
original population has a high mortality rate of 0.4 (Fig.
la). There are many instances in which it is optimal to
translocate to the new site under the active adaptive
strategy, but not under the passive adaptive strategy.
This is because the passive adaptive strategy is to
translocate to the site with the lowest (expected)
mortality rate and maximize expected population
growth over the translocation project. However, under
the active adaptive strategy it is sometimes optimal to
translocate to the new site even when we suspect it has
the lower population growth rate, so that we can learn
more about the mortality rate there. Any losses incurred
by translocating to a site with a higher mortality rate are
outweighed by the benefit to future management of
reducing uncertainty about the true mortality rate at the
new site. Put more simply, the optimal decisions in these
instances are driven by a need to learn.

Effect of prior knowledge on learning

As we would expect, it is more beneficial to learn
when the estimated mortality rate at the new site is
highly uncertain. For example, consider again that both
sites are empty at the start of the translocation project,
and the original population has a high mortality rate of
0.4 (Fig. la). When we have a low amount of prior
information from which to estimate the new site
mortality rate (Jo — 1]+ [B — 1] = 1), we translocate to
the new site up to an expected mortality rate of 0.67.
Thus, if we are very uncertain, it is best to learn about
the new site if we think it may have a mortality rate up
to 0.27 higher than the mortality rate of the original
population. When we have a large amount of prior
information (Jo — 1]+ [B — 1]=22, for example) and thus
have more confidence in our estimate of the mortality
rate, it is best to learn about the new site up to an
estimated mortality rate of 0.46, only 0.06 higher than
the mortality rate of the original population.

Effect of mortality rate at the original site on learning

The importance of learning is also affected by the
mortality rate of the original population. In Fig. 1 we
compare strategies across different mortality rates for
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FiG. 1. Adaptive translocation strategies at the beginning of the project (#= 1) when the new site is empty (1} =0), where r* is
the number of females in population A at time . The original site (n?) is either empty (a, c, €) or consists of 20 wallabies (b, d, f).
Shading indicates the optimal passive adaptive strategy: translocate both wallabies to the new site (d=2, dark shading), one wallaby
to each site (d = 1, light shading), or both wallabies to the original site (¢ = 0, no shading), where d is the number of individuals
translocated to the new site. Symbols indicate the optimal active adaptive strategy: translocate both wallabies to the new site (d=2,
solid circles), one wallaby to each site (d = 1, triangles), or both wallabies to the original site (d = 0, crosses). Three different
mortality rates for the original population (up) are shown: 0.4 in the top row, 0.3 in the middle row, and 0.2 in the bottom row.

the original population, at the start of the translocation than the original population. If the original population
project. If the original population is empty and has a is empty and has a mortality rate of 0.3 (Fig. 1c), we
mortality rate of 0.4 (Fig. 1a), we learn about the new learn about the new site if it has an estimated mortality
site if it has an estimated mortality rate up to 0.27 higher  rate up to 0.2 higher. If the original population is empty
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each site (d = 1, triangles), or both wallabies to the original site (d = 0, crosses).

and has a mortality rate of 0.2 (Fig. le), we learn about
the new site if it has an estimated mortality rate up to
0.05 higher. Thus, the extent of learning decreases as
the mortality rate of the original population decreases.
If the original population has a low mortality rate,
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Adaptive translocation strategies when the original population has a mortality rate of 0.3 (uz=0.3) and the new site is
empty (n! =0). Strategies are shown across time: at the start of the translocation project 3 years 8 months remaining, 7= 1), in the
middle (2 years remaining, = 5), and close to the end (8 months remaining, ¢=10). The original site () is either empty (a, ¢, €) or
consists of 20 wallabies (b, d, f). Shading indicates the optimal passive adaptive strategy: translocate both wallabies to the new site
(d = 2, dark shading), one wallaby to each site (d = 1, light shading), or both wallabies to the original site (d = 0, no shading).
Symbols indicate the optimal active adaptive strategy: translocate both wallabies to the new site (d=2, solid circles), one wallaby to

there is less pressure to explore the alternative.
However, if the original population has a higher
mortality rate, it becomes important to determine
whether a population established at the new site will
fare any better. It is also less risky to translocate to the
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new site if the benefit of translocating to the original
population is small.

This observation does not hold when learning is
influenced by the carrying capacity. Instances of
learning can increase as the mortality rate of the original
population decreases, if the original population is close
to its carrying capacity or likely to reach its carrying
capacity during the translocation period (Fig. 1b, d, f).
For example, consider that the original population has a
mortality rate of 0.2 at the start of the translocation
project. If it is empty, it is optimal to learn about the
new site if it has an estimated mortality rate of up to
0.25, which is 0.05 higher than under the passive
adaptive results (Fig. le). However, if the original
population is close to its carrying capacity, it is optimal
to translocate to the new site for the entire range of
estimated mortality rates, which is up to 0.35 higher
than under the passive adaptive results (Fig. 1f). As
previously noted, any animals added to a population at
carrying capacity die immediately and are effectively
“wasted.” Translocating to the new site (and learning
the population mortality rate there) is therefore encour-
aged when the original population is likely to achieve the
carrying capacity without translocation: the risk of
failing when learning is outweighed by the risk of
translocating to a full population. Translocation to the
new site also has the added benefit of improving future
management.

Effect of time remaining on learning

Instances of learning decrease as the translocation
project progresses through time. For example, consider
that the mortality rate of the original population is 0.3
and the new site is empty. If the original site is also
empty at the start of the translocation project, learning
is an important driver of optimal decisions up to an
expected new site mortality rate of 0.5 (Fig. 2a). By the
middle of the project, the extent of this learning
decreases (Fig. 2c), and close to the end of the project
(the second-to-last time step), learning only occurs up to
an expected new site mortality rate of 0.33 (Fig. 2e). In
the final time step of the project, no learning occurs at
all. Again, we can see that when the original population
is close to its carrying capacity, the range of expected
mortality rates over which it is optimal to translocate to
the new site is increased, and the range over which it is
optimal to learn is increased (Fig. 2b, d, f). However, we
still observe the same pattern of decreased instances of
learning over time. The importance of learning decreases
over time because its potential benefit to future
management decreases. In the final time step there is
no prospect of future management, so there is no benefit
to learning.

Simulating active adaptive translocation

An example of the active adaptive management of a
translocation project is shown in Fig. 3. Initially, the
original and new sites hold 15 and 0 wallabies,
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respectively. The mortality rate at the original popula-
tion is known to be 0.3; the mortality rate at the new site
is uncertain and a beta(3, 7) prior distribution is set for
it. This is a somewhat vague distribution with a mean of
0.3, attaching roughly equal weight to the possibilities of
an increasing or a declining population at the new site.
In the first three time steps, all captive wallabies are
translocated to the new site with the purpose of learning
the mortality rate at this site. All six translocated
wallabies survive their first time step in this new
environment, and the manager’s perception of the
mortality rate decreases. Furthermore, wallabies begin
reproducing at the new site. The manager is now
sufficiently confident that the new site is superior to
the original site and all wallabies are translocated to the
original population over the next three time steps.
However, by chance the new population actually
declines slightly, so the manager supplements the new
population. The new population thrives over the second
half of the project, and the estimated mortality rate for
the new population is refined to a value near 0.2 as the
translocation successes and failures are observed. The
original population has 20 wallabies at the end of the
project and the final population size at the new site is 27
wallabies, consisting of surviving translocated wallabies
and their offspring.

We generated multiple simulations of translocation
management over a range of parameter values (Appen-
dix B). Active adaptive management produced mean
final population sizes that were consistently greater than
or roughly equal to those from passive adaptive
management. The improvement of active over passive
adaptive management is generally only 1-3% but can be
as great as 20%. This occurs when the new site has an
underlying mortality rate of py, = 0.2 while the original
population is known to be steady with pz = 0.3. When
both sites are empty, an active adaptive manager will
translocate to the new site and quickly learn that a
population can grow rapidly there. By contrast, a
passive adaptive manager will spend much of the project
establishing a steady population at the original site
before translocating wallabies to the new site of
unknown quality.

DiscussioNn

We have constructed a translocation strategy that
incorporates uncertainty in the mortality rate of
translocated animals at a site. Under passive adaptive
management, the expected mortality rate at the new site
is treated as the true value when making decisions.
Under active adaptive management, there is opportunity
to learn the true mortality rate and improve future
management as a result. Learning is most beneficial to
management: (1) when the original population has a
high mortality rate; (2) when the original population is
likely to reach carrying capacity; (3) when the mortality
rate of the new site is highly uncertain; and (4) when
more time remains for the benefits of learning to be
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An example simulation of active adaptive management of a four-year translocation project. (a) Number of wallabies at

the new site, n! (solid line), number of wallabies at the original site n® (long-dashed line), and d, the number of wallabies
translocated to the new site (short-dashed line). (b) Estimated mortality rate p, at the new site, denoted by the mean (solid line),
with 2.5th and 97.5th percentiles on the beta distribution (short-dashed lines). The true mortality rates of the populations at the
original and new sites are [z =0.3 and p, =0.2, respectively. Initially the original population consists of 15 wallabies, the new site is
empty, and the prior distribution for the uncertain mortality rate at the new site is Beta(3, 7).

realized. The benefits to management can be significant:
our simulations show that learning can increase the final
number of animals by as much as 20%.

We have shown that the optimal strategies are
influenced by the imposed carrying capacity. The specific
carrying capacities imposed here are a necessity of the
computational method, and may not reflect the biolog-
ical reality for our case study of bridled nailtail
wallabies. By analyzing results for when the original
population is both far from and close to its carrying
capacity, we have been able to examine the effect of this
carrying capacity on the optimal strategies as well as the
extent of learning. We have focused mainly on the
carrying capacity of the original population, because we
expect that a population translocated entirely to a new
site is unlikely to approach such a limit over the course
of the project.

We used a beta distribution to represent our
knowledge of the uncertain parameter. In combination
with the binomial observation process, this allows us to
model belief of all values on the interval [0, 1] using only
two state variables, o and B, and to update model belief
simply. The approach reduces computational require-
ments substantially and has potential application in a
range of ecological management scenarios, such as
measuring revegetation success (McCarthy and Possi-
ngham 2007) and modeling transitions in population
size (Hauser and Possingham 2008).

There are several ways in which this framework could
be made more realistic. By assuming that translocated
animals have the same mortality rate as the larger
population, we do not account for any increase in
mortality caused by the translocation itself. We could

instead assume that there is some functional relationship
between the mortality rate of translocated animals and
that of the larger population. This would add complex-
ity to the model, and the method of updating the
expected mortality rate. We could also expand the
framework to account for uncertainty in more than one
model parameter. Incorporating uncertainty for more
parameters would entail adding at least two more states
to the SDP for each uncertain parameter, with each
addition creating a geometric increase in computational
requirements. Also, the results from such a program
would be extremely difficult to interpret, especially when
determining which factors drive optimal decisions. This
model also ignores the effect of environmental stochas-
ticity, such as the impact of weather on mortality.
Incorporating this would involve tracking a variable
mortality rate over time, which would also involve a
significant increase in computational requirements as
well as complexity of results. As with any model, there is
a trade-off between realism and simplicity. As the first
application of a Bayesian SDP to translocation, our
model is a simpler one that can be built upon. If the
complexity of this model were to be increased, it might
be more appropriate to use a different decision analysis
method to find an approximate rather than optimal
solution.

Our simulations required specifying a prior probabil-
ity for the mortality rate of the new site that could be
updated when learning. We tried to select a vague prior:
setting the mean of our prior to be 0.3 gives even weights
to the possibilities of a declining population and a
growing population. We could instead use a uniform
distribution, which gives an initial mean mortality rate
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of 0.5. However, as the mortality rate values for the
original population range between 0.2 and 0.4, this
means that the new site initially would be considered less
suitable than the original site. Under passive adaptive
management (where the expected mortality rate is
treated as the true rate), the new site would never be
utilized. Under active adaptive management, there is still
an incentive to learn about the new site despite the prior
belief of a high mortality rate. In this case, active
adaptive management greatly outperforms passive
adaptive management because, through learning, the
new site can be discovered to be better than initially
thought. In general, it is intuitive that the experimental
approach of the active adaptive manager will perform
well if the new site is highly suitable and will cause
mortality when the site is unsuitable. This structured
decision theoretic approach indicates when a manager
should withdraw from an unsuitable site and utilize a
new suitable location for species translocation. When
applying these strategies in practice, ideally there might
be information about the species and habitat quality
that would allow the manager to construct a prior
appropriate to the specific situation.

The translocation of threatened species could be an
appropriate venue for the application of active adaptive
management. Because of its threatened status, it may
not be possible to delay the translocation of a species to
learn about the suitability of candidate translocation
sites. When managing in an actively adaptive way, this
learning is incorporated into the management process,
which can then begin without delay. By using decision
theory to find the best management strategies, experi-
mentation can be undertaken only when the benefits to
future management are greater than the risk of losing
animals.
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